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Abstract In this paper we study the solvability of the generalized vector variational
inequality problem, the GVVI problem, with a variable ordering relation in reflexive Ba-
nach spaces. The existence results of strong solutions of GVVIs for monotone multifunc-
tions are established with the use of the KKM-Fan theorem. We also investigate the GVVI
problems without monotonicity assumptions and obtain the corresponding results of weak
solutions by applying the Brouwer fixed point theorem. These results are also the extension
and improvement of some recent results in the literature.
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1 Introduction

A partially ordered set (X,�) is a set X equipped with a partial order �, that is, � is a
transitive, reflexive, antisymmetric relation. An ordered vector space X is a real vector space
with a partial order � such that if x, y ∈ X and x � y, then
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(1) x + z � y + z for each z ∈ X ; and
(2) αx � αy for each α ≥ 0.

A nonempty subset P of a vector space X is a convex cone if αP ⊂ P for all α ≥ 0 and
P + P = P . A convex cone P is pointed if P ∩ (−P) = {0}. A cone P is proper if it is
properly contained in X . Note that P is a proper cone if and only if 0 /∈ intP , where intE
denotes the interior of a set E . A pointed convex cone P induces a partial order ≤P on X
defined by x ≤P y whenever y − x ∈ P . In this case, (X,≤P ) is an ordered vector space
with an order relation ≤P . The weak order �intP on an ordered vector space (X,≤P ) with
intP �= ∅ is defined by x �intP y whenever y − x /∈ intP .

Let X and Y be two Banach spaces. The space of all continuous linear operators from a
Banach space X into a Banach space Y is denoted by L(X, Y ). For S ∈ L(X, Y ) and x ∈ X ,
〈S, x〉 denotes the value of S at x . Let K be a nonempty closed convex subset of X and let
C : K → 2Y be a cone mapping, i.e., C(x) is a proper closed pointed convex cone and
intC(x) �= ∅ for each x ∈ K . Suppose that A : K × L(X, Y ) → L(X, Y ) and f : K → Y
are single-valued mappings and T : K → 2L(X,Y ) is a set-valued mapping. The purpose of
this paper is to consider the generalized vector variational inequality, GVVI for short, which
is to find x0 ∈ K with the following property: there exists u0 ∈ T (x0) such that

〈A(x0, u0), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K .

Such an x0 is also called a strong solution of GVVI. If T is single-valued, then GVVI reduces
to the vector variational inequality (VVI). In recent years there has been an increasing inter-
est in VVI; mainly this study in finite-dimensional Euclidean spaces was first introduced
by Giannessi in [6]. It has shown to be an effective and powerful tool in the mathematical
investigation of a wide class of problems arising in pure and applied sciences. Various classes
of VVIs have been intensively analyzed both in finite- and infinite-dimensional spaces; see
[2–4,7–11,14–18] and the references therein. In [19], Zheng posed the concept of semimo-
notonicity and applied Fan-Glicksberg fixed point theorem to generalize the existence results
for VVI obtained by Chen [4] which is to find a point x0 ∈ K such that

〈η(x0, x0), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K ,

where η : K × K → L(X, Y ). Most of the latest existence results for VVI problems are
based on KKM-Fan Theorem [5], which requires the feasible set to be closed and bounded
in the strong topology and the mapping to possess certain monotonicity type properties; see
[2,9,10,18]. It is noteworthy that Huang and Fang [9] studied the following VVI in reflexive
Banach spaces not only with but also without monotonicity assumptions: find x0 ∈ K such
that

〈T x0, y − x0〉 + f (y) − f (x0) �intC 0, for all y ∈ K ,

where T : K → L(X, Y ) and C is a proper closed pointed convex cone with intC �= ∅.
Furthermore, Zeng and Yao [18] defined the concepts of the complete and strong semiconti-
nuities and extended the results of Huang and Fang to GVVI, i.e., find x0 ∈ K and u0 ∈ T (x0)

such that

〈Au0, y − x0〉 + f (y) − f (x0) �≤intC 0, for all y ∈ K ,

where A : L(X, Y ) → L(X, Y ) and T : K → 2L(X,Y ).
The motivation of this work is to further extend the results of Zeng and Yao [18] to a more

general setting. We first establish the existence results of the GVVI problems for monotone
multifunctions T : K → 2L(X,Y ) with the use of KKM-Fan Theorem. To this end, we need
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to provide a parallel version of the existence of strong solutions to GVVI. It is somewhat
difficult to derive a corresponding result of strong solutions to our GVVI problems without
assuming monotonicity. Instead, we investigate the following problem: find a point x0 ∈ K ,
called a weak solution, such that for each y ∈ K there exists uy ∈ T (x0) satisfying

〈A(x0, uy), y − x0〉 + f (y) − f (x0) �intC(x0) 0.

Each strong solution is of course a weak solution of GVVI, but the converse is false. This
problem for the case where A(x, u) = u and f ≡ 0 was introduced by Lin, Yang and Yao
[12]. Being based upon the characterization of upper semicontinuity together with Brouwer
fixed point theorem, we present several new results which are the extensions of those in
[2,3,9,10,17,18].

The paper is organized as follows. In Sect. 2 we set notation and give some background.
In Sect. 3 we prove the existence results of GVVIs for vector monotone multifunctions in
reflexive Banach spaces. Finally, in Sect. 4 we study GVVI problems without monotonicity
assumptions.

2 Notation, definitions and basic properties

Let X and Y be topological spaces. A multifunction ϕ : X → 2Y is upper semicontinuous
at x if for every open set V containing ϕ(x), there is a neighborhood U of x such that z ∈ U
implies ϕ(z) ⊂ V . We say that ϕ is upper semicontinuous on X if it is upper semicontinuous
at every point of X . The mapping ϕ is closed, or has closed graph if its graph given by

G(ϕ) = {(x, y) ∈ (X × Y ) : y ∈ ϕ(x)}
is a closed subset of X × Y . We recall the following well-known facts.

Theorem 2.1 (a) An upper semicontinuous multifunction ϕ : X → 2Y is closed if either

(i) ϕ is closed-valued and Y is regular, or
(ii) ϕ is compact-valued and Y is Hausdorff.

(b) A compact-valued multifunction ϕ : X → 2Y is upper semicontinuous if and only if for
every net {(xα, yα)} in G(ϕ) that satisfies xα → x for some x ∈ X the net {yα} has a
subnet converging to a point in ϕ(x).

Let (X, ‖ · ‖) be a normed vector space so that its norm induces a metric d . For any pair
of nonempty subsets A and B of X , define

dH (A, B) = max{sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖}.

This extended real number dH (A, B) is the Hausdorff distance between A and B induced by
d . The distance function dH turns the collection of all nonempty closed and bounded subsets
of X , denoted F(X), into a metric space. Note that [13] if A and B are nonempty subsets of
X with B compact, then for each a ∈ A there exists b ∈ B such that

‖a − b‖ ≤ dH (A, B).

Definition 2.2 [18] Let X and Y be two real Banach spaces and K a nonempty closed convex
subset of X . A compact-valued multifunction T : K → 2L(X,Y ) is H -hemicontinuous if the
mapping α �→ T (x +αy) is continuous at 0+, where F(L(X, Y )) is equipped with the metric
topology induced by dH .
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The concept of H -hemicontinuity is interesting and useful in connection to nonlinear
mappings of monotone type.

Definition 2.3 Let X and Y be real Banach spaces. A function f : X → Y is completely
continuous if { f (xn)} converges to f (x) in Y whenever {xn} converges weakly to some
x ∈ X , i.e., f is weak-to-norm sequentially continuous.

A completely continuous linear operator T from a Banach space X into a Banach space
Y is also known as a Dunford-Pettis operator and is continuous. Hence the collection of
all completely continuous linear operators from X into Y , denoted Lcc(X, Y ), is a subspace
of L(X, Y ). Sequential continuity does not in general imply continuity. In fact not all com-
pletely continuous operators are weak-to-norm continuous. It does of course follow from the
definition of complete continuity that every weak-to-norm continuous linear operator from
X into Y is completely continuous.

Definition 2.4 Let X and Y be real Banach spaces, K a nonempty subset of X and C a
convex cone.

(i) A single-valued mapping T : K → L(X, Y ) is C-monotone if

〈T (x) − T (y), x − y〉 ≥C 0, for all x, y ∈ K .

(ii) A set-valued mapping T : K → 2L(X,Y ) is C-monotone if

〈x∗ − y∗, x − y〉 ≥C 0, whenever x, y ∈ K , x∗ ∈ T x, y∗ ∈ T y,

(iii) A set-valued mapping T : K → 2L(X,Y ) is C-monotone with respect to a mapping
A : L(X, Y ) → L(X, Y ) (see [18]) if

〈Ax∗ − Ay∗, x − y〉 ≥C 0, whenever x, y ∈ K , x∗ ∈ T x, y∗ ∈ T y.

(iv) A mapping f : K → Y is C-convex if

f (t x + (1 − t)y) ≤C t f (x) + (1 − t) f (y), for all x, y ∈ K , t ∈ [0, 1].

3 Strong solutions of GVVI with monotonicity

We turn attention to the question of the solvability to GVVIs for vector monotone multifunc-
tions in reflexive Banach spaces by applying the KKM-Fan theorem.

Let E be a nonempty subset of a topological vector space X . A multifunction ϕ : E → 2X

is a KKM mapping if for any finite subset {x1, x2, ..., xn} of E ,

co{x1, x2, ..., xn} ⊂
n⋃

i=1

ϕ(xi ),

where co{x1, x2, ..., xn} denotes the convex hull of {x1, x2, ..., xn}. In a topological vector
space, the convex hull of a finite union of compact convex sets is compact.

Lemma 3.1 (KKM-Fan Theorem [5]) Let E be a nonempty convex subset of a Hausdorff
topological vector space X and let ϕ : E → 2X be a KKM mapping with closed values. If
there is a point x0 ∈ E such that ϕ(x0) is compact, then

⋂
x∈E ϕ(x) �= ∅.

Lemma 3.2 [3] Let C a closed pointed convex cone with intC �= ∅ and let (X,≤C ) be a
real ordered Banach space. For any a, b, c ∈ X, we have
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(i) c �intC a and a ≥C b imply that c �intC b;
(ii) c �intC a and a ≤C b imply that c �intC b.

A key to our problem is shown as follows. It also generalizes [9, Lemma 2.5] and [18,
Lemma 2.3].

Lemma 3.3 Let X and Y be real Banach spaces, K a nonempty closed convex subset of X,
C : K → 2Y and T : K → 2L(X,Y ) two multifunctions, f : K → Y and A : K ×L(X, Y ) →
L(X, Y ) two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) T is H-hemicontinuous and C−-monotone with respect to A(x, ·), for each x ∈ K ,
with nonempty compact values;

(iv) f is C−-convex;
(v) A is continuous in the second variable.

Then a point x0 ∈ K is a strong solution of GVVI, i.e., there exists u0 ∈ T (x0) such that

〈A(x0, u0), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K ,

if and only if

〈A(x0, v), y − x0〉 + f (y) − f (x0) �≤intC(x0) 0, for all y ∈ K and v ∈ T (y).

Proof Suppose that there exist x0 ∈ K and u0 ∈ T (x0) such that

〈A(x0, u0), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K .

Let y ∈ K and v ∈ T (y). Since T is C−-monotone with respect to A(x0, ·), it follows that

〈A(x0, v), y − x0〉 + f (y) − f (x0) ≥C− 〈A(x0, u0), y − x0〉 + f (y) − f (x0)

and so

〈A(x0, v), y − x0〉 + f (y) − f (x0) ≥C(x0) 〈A(x0, u0), y − x0〉 + f (y) − f (x0).

Therefore by Lemma 3.2,

〈A(x0, v), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K , v ∈ T (y).

For the converse, suppose that there exists x0 ∈ K such that

〈A(x0, v), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K , v ∈ T (y). (1)

For any y ∈ K , yt = (1 − t)x0 + t y ∈ K , for all t ∈ (0, 1), because K is convex. Let
vt ∈ T (yt ). Using yt and vt in place of y and v in Eq. (1) respectively yields

〈A(x0, vt ), yt − x0〉 + f (yt ) − f (x0) �intC(x0) 0. (2)

On the other hand, the convexity of f implies that

〈A(x0, vt ), yt − x0〉 + f (yt ) − f (x0) ≤C− 〈A(x0, vt ), t (y − x0)〉 + (1 − t) f (x0)

+t f (y) − f (x0) = t[〈A(x0, vt ), y − x0〉 + f (y) − f (x0)].
In particular,

〈A(x0, vt ), yt − x0〉 + f (yt ) − f (x0) ≤C(x0) t[〈A(x0, vt ), y − x0〉 + f (y) − f (x0)]. (3)
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By Eqs. (2) and (3) and Lemma 3.2, we obtain

〈A(x0, vt ), y − x0〉 + f (y) − f (x0) �≤intC(x0) 0, for all vt ∈ T (yt ), t ∈ (0, 1). (4)

Since T is compact-valued, for each vt ∈ T (yt ) there exists ut ∈ T (x0) such that

‖vt − ut‖ ≤ dH (T (yt ), T (x0)).

We may assume without loss of generality that {ut } converges to some u0 ∈ T (x0) as t → 0+.
Since

‖vt − u0‖ ≤ ‖vt − ut‖ + ‖ut − u0‖ ≤ dH (T (yt ), T (x0)) + ‖ut − u0‖,
this shows that vt → u0 as t → 0+. For each y ∈ K ,

‖〈A(x0, vt ), y − x0〉 − 〈A(x0, u0), y − x0〉‖ ≤ ‖A(x0, vt ) − A(x0, u0)‖‖y − x0‖. (5)

Letting t → 0+ and using the continuity of A(x0, ·), we obtain from Eq. (5) that {〈A(x0, vt ),

y−x0〉} converges to 〈A(x0, u0), y−x0〉. Since Y\(−intC(x0)) is closed, we have by Eq. (4)
that

〈A(x0, u0), y − x0〉 + f (y) − f (x0) ∈ Y\(−intC(x0)).

Hence

〈A(x0, u0), y − x0〉 + f (y) − f (x0) �≤intC(x0) 0, for all y ∈ K . ��
We are now in a position to discuss solvability of GVVI for monotone mappings.

Theorem 3.4 Let X be a real reflexive Banach space, Y a real Banach space, K a nonempty
bounded closed convex subset of X, C : K → 2Y , D : K → 2Y and T : K → 2L(X,Y )

three multifunctions, where D is defined by D(x) = Y\(−intC(x)), f : K → Y and
A : K × L(X, Y ) → L(X, Y ) two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has weakly closed graph;
(iii) T is H-hemicontinuous and C−-monotone with respect to A(x, ·), for each x ∈ K ,

with nonempty compact values;
(iv) f is weakly sequentially continuous and C−-convex;
(v) A is completely continuous in the first variable and continuous in the second variable.

Then there exist x0 ∈ K and u0 ∈ T (x0) such that

〈A(x0, u0), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K .

Proof Let E, F : K → 2K be two multifunctions defined by, for y ∈ K ,

E(y) = {x ∈ K : 〈A(x, u), y − x〉 + f (y) − f (x) �intC(x) 0, for some u ∈ T (x)}
and

F(y) = {x ∈ K : 〈A(x, v), y − x〉 + f (y) − f (x) �intC(x) 0, for all v ∈ T (y)}.
Then E(y) and F(y) are nonempty due to y ∈ E(y) ∩ F(y). We claim that E is a KKM
mapping. Assume on the contrary that there exist a finite subset {x1, ..., xn} of K and non-
negative numbers t1, . . . , tn with

∑n
i=1 ti = 1 such that

x =
n∑

i=1

ti xi /∈
n⋃

i=1

E(xi ).
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Then for any u ∈ T (x),

〈A(x, u), xi − x〉 + f (xi ) − f (x) ≤intC(x) 0, i = 1, 2, ..., n;
hence by C−-convexity of f ,

0 = 〈A(x, u), x − x〉 + f (x) − f (x)

≥C(x)

n∑

i=1

ti 〈A(x, u), x − xi 〉 + f (x) −
n∑

i=1

ti f (xi )

=
n∑

i=1

ti [〈A(x, u), x − xi 〉 + f (x) − f (xi )]

≥intC(x) 0,

which leads to a contradiction that C(x) = Y . So E is a KKM mapping. Further E(y) ⊂ F(y)

for every y ∈ K . For, if x ∈ E(y), then there exists u ∈ T (x) such that

〈A(x, u), y − x〉 + f (y) − f (x) �intC(x) 0.

Since T is C−-monotone with respect to A(x, ·), we obtain

〈A(x, v), y − x〉 + f (y) − f (x) ≥C(x) 〈A(x, u), y − x〉 + f (y) − f (x),

for all y ∈ K , v ∈ T (y). Hence Lemma 3.2 asserts that

〈A(x, v), y − x〉 + f (y) − f (x) �≤intC(x) 0, for all y ∈ K , v ∈ T (y).

This shows that E(y) ⊂ F(y) for all y ∈ K , and so F is also a KKM mapping.
We next prove that for each y ∈ K , the set F(y) is closed in the weak topology of X .

Note that the weak closure F(y)
w

of F(y) is weakly compact because K is weakly compact.
Thus for any x ∈ F(y)

w
, there is a sequence {xn} in F(y) which converges weakly to x . The

definition of F(y) assures that for all n ∈ N, v ∈ T (y),

〈A(xn, v), y − xn〉 + f (y) − f (xn) ∈ D(xn) = Y\(−intC(xn)). (6)

For any fixed v ∈ T (y),

〈A(xn, v), y − xn〉 − 〈A(x, v), y − x〉
= 〈A(xn, v) − A(x, v), y − xn〉 − 〈A(x, v), xn − x〉. (7)

Since A(·, v) : K → L(X, Y ) is completely continuous, letting n → ∞ we have

‖〈A(xn, v) − A(x, v), y − xn〉‖ ≤ ‖A(xn, v) − A(x, v)‖‖y − xn‖ → 0.

Also, 〈A(x, v), xn − x〉 → 0 weakly as n → ∞ because the linear operator A(x, v) is
weak-to-weak continuous. Now the weak-to-weak sequential continuity of f implies that
the sequence {〈A(xn, v), y − xn〉 + f (y) − f (xn)} converges weakly to 〈A(x, v), y − x〉 +
f (y) − f (x). Since the graph of D is weakly closed, it follows from Eq. (6) that

〈A(x, v), y − x〉 + f (y) − f (x) ∈ D(x).

We conclude that x ∈ F(y). Therefore for each y ∈ K , F(y) is weakly closed and so is
weakly compact. According to KKM-Fan Theorem (Lemma 3.1),

⋂

y∈K

F(y) �= ∅;
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hence there exists x0 ∈ K such that

〈A(x0, v), y − x0〉 + f (y) − f (x0) �intC(x0) 0, for all y ∈ K , v ∈ T (y).

Equivalently, by Lemma 3.3 there exists u0 ∈ T (x0) such that

〈A(x0, u0)〉 + f (y) − f (x0) �≤intC(x0) 0, for all y ∈ K . ��
Theorem 3.4 is subtler than it might appear. For instance, the conclusion no longer follows

even if f is completely continuous, though it can be shown in the same way as in the proof
that for each y ∈ K , F(y) is closed in the norm topology of X . Since F(y) is not necessarily
convex, it does not have to be weakly compact, and therefore the KKM-Fan theorem cannot
be applied to F .

When the underlying space X is a finite dimensional normed space, the norm and weak
topologies of X coincide, and the continuity and the sequential continuity from X into a
topological space are also the same. In this case, each F(y) is compact if we assume that
f is continuous. In addition, the same argument of Theorem 3.4 works provided that D has
closed graph. This result is stated next.

Corollary 3.5 Let Y be a real Banach space, K a nonempty bounded closed convex subset
of Rn, C : K → 2Y , D : K → 2Y and T : K → 2L(Rn,Y ) three multifunctions, where D is
defined by D(x) = Y\(−intC(x)), f : K → Y and A : K × L(Rn, Y ) → L(Rn, Y ) two
single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has closed graph;
(iii) T is H-hemicontinuous and C−-monotone with respect to A(x, ·), for each x ∈ K ,

with nonempty compact values;
(iv) f is continuous and C−-convex;
(v) A is continuous.

Then GVVI has a strong solution.

To guarantee the existence of strong solutions to GVVI for a weak-to-norm upper semi-
continuous mapping D, we require that A be a function from K × L(X, Y ) into Lcc(X, Y ),
instead of L(X, Y ).

Theorem 3.6 Let X be a real reflexive Banach space, Y a real Banach space, K a nonempty
bounded closed convex subset of X, C : K → 2Y , D : K → 2Y and T : K → 2L(X,Y )

three multifunctions, where D is defined by D(x) = Y\(−intC(x)), f : K → Y and
A : K × L(X, Y ) → Lcc(X, Y ) two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D is weak-to-norm upper semicontinuous;
(iii) T is H-hemicontinuous and C−-monotone with respect to A(x, ·), for each x ∈ K ,

with nonempty compact values;
(iv) f is completely continuous and C−-convex;
(v) A is completely continuous in the first variable and continuous in the second variable.

Then GVVI has a strong solution.

Proof This result can be proved from similar arguments to those employed in the proof
of Theorem 3.4. Denote the space X endowed with the weak topology by Xw . Since D
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is a closed-valued weak-to-norm upper semicontinuous multifunction with a regular range
space, it follows that G(D) is a closed subset of Xw × Y . By adapting the same notation as
in Theorem 3.4, we see from Eq. (7) that for each n ∈ N,

‖〈A(xn, v), y−xn〉−〈A(x, v), y−x〉‖ ≤ ‖A(xn, v)−A(x, v)‖‖y−xn‖+‖〈A(x, v), xn−x〉‖.
Since A(·, v), A(x, v) and f are completely continuous, the above inequality implies that the
sequence {〈A(xn, v), y − xn〉+ f (y)− f (xn)} converges to 〈A(x, v), y − x〉+ f (y)− f (x).
This shows that F(y) is weakly closed. The remaining claims in the theorem are proved by
same arguments of Theorem 3.4. ��

We can extend the previous results to the case where the set K is closed and convex but
not necessarily bounded under a coercive condition.

Theorem 3.7 Let X be a real reflexive Banach space, Y a real Banach space, K a nonempty
closed convex subset of X such that K ∩ Br �= ∅, for some r > 0, where Br = {x ∈ X :
‖x‖ ≤ r}, C : K → 2Y , D : K → 2Y and T : K → 2L(X,Y ) three multifunctions, where D
is defined by D(x) = Y\(−intC(x)), f : K → Y and A : K × L(X, Y ) → L(X, Y ) two
single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has weakly closed graph;
(iii) T is H-hemicontinuous and C−-monotone with respect to A(x, ·), for each x ∈ K ,

with nonempty compact values;
(iv) f is weakly sequentially continuous and C−-convex;
(v) A is completely continuous in the first variable and continuous in the second variable;

(vi) for each x ∈ K with ‖x‖ = r and each u ∈ T (x), there exists y ∈ K ∩ Br such that

〈A(x, u), y − x〉 + f (y) − f (x) ≤intC(x) 0.

Then GVVI has a strong solution.

Proof By Theorem 3.4, there exist xr ∈ K ∩ Br and ur ∈ T (xr ) such that

〈A(xr , ur ), y − xr 〉 + f (y) − f (xr ) �intC(xr ) 0, for all y ∈ K ∩ Br . (8)

It follows from assumption (vi) that ‖xr‖ < r . To prove that xr is a strong solution, let z ∈ K
and choose t ∈ (0, 1) small enough such that (1 − t)xr + t z ∈ K ∩ Br . In Eq. (8), using
(1 − t)xr + t z in place of y yields

〈A(xr , ur ), (1 − t)xr + t z − xr 〉 + f ((1 − t)xr + t z) − f (xr ) �intC(xr ) 0. (9)

Since f is C−-convex, we have

〈A(xr , ur ), (1 − t)xr + t z − xr 〉 + f ((1 − t)xr + t z) − f (xr )

≤C(xr ) t〈A(xr , ur ), z − xr 〉 + (1 − t) f (xr ) + t f (z) − f (xr )

= t[〈A(xr , ur ), z − xr 〉 + f (z) − f (xr )]. (10)

Therefore Eqs. (9) and (10) and Lemma 3.2 imply that

〈A(xr , ur ), z − xr 〉 + f (z) − f (xr ) �≤intC(xr ) 0,

as required. ��
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Corollary 3.8 Let Y be a real Banach space, K a nonempty closed convex subset of Rn such
that K∩Br �= ∅, for somer > 0, where Br = {x ∈ X : ‖x‖ ≤ r}, C : K → 2Y , D : K → 2Y

and T : K → 2L(Rn,Y ) three multifunctions, where D is defined by D(x) = Y\(−intC(x)),
f : K → Y and A : K ×L(Rn, Y ) → L(Rn, Y ) two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has closed graph;
(iii) T is H-hemicontinuous and C−-monotone with respect to A(x, ·), for each x ∈ K ,

with nonempty compact values;
(iv) f is continuous and C−-convex;
(v) A is continuous;

(vi) for each x ∈ K with ‖x‖ = r and each u ∈ T (x), there exists y ∈ K ∩ Br such that

〈A(x, u), y − x〉 + f (y) − f (x) ≤intC(x) 0.

Then GVVI has a strong solution.

Proof This follows immediately from Theorem 3.7. ��
We shall give an example in finite dimensional Euclidean spaces where the multifunction

T : K → 2L(X,Y ) and the single-valued function A : K × L(X, Y ) → L(X, Y ) satisfy
conditions (iii) and (v) in Theorem 3.4.

Example 3.9 Let X = Y = R2, K = [0, 1] × [0, 1] and C : K → 2R2
a multifunction

defined by

C(x1, x2) =
{
(r cos θ, r sin θ) ∈ R2 : r ≥ 0, 0 ≤ θ ≤ π

8
(x1 + x2 + 4)

}
,

for (x1, x2) ∈ K . Then C is a cone mapping and C− = ⋂
x∈K C(x) = {(x1, x2) ∈ R2 : x1 ≥

0, x2 ≥ 0}. Given any matrix L =
(

a b
c d

)
∈ L(R2, R2), we define ‖L‖ = |a|+|b|+|c|+|d|

so that ‖ · ‖ induces a norm on L(R2, R2). Let A : K × L(R2, R2) → L(R2, R2) be defined
by

A((x1, x2), u) =
(

u11 x1

x2 u22

)
,

where (x1, x2) ∈ K and u =
(

u11 u12

u21 u22

)
∈ L(R2, R2), and let T : K → 2L(R2,R2) be

defined by

T (x1, x2) =
{(

x1 x2

x1 x2

)
,

(
x1 x1

x2 x2

)}
,

where (x1, x2) ∈ K .
We first show that T is C−-monotone with respect to A((a1, a2), ·), for each (a1, a2) ∈ K .

Let (x1, x2), (y1, y2) ∈ K . If u ∈ T (x1, x2) and v ∈ T (y1, y2), then

A((a1, a2), u) − A((a1, a2), v) =
(

x1 − y1 0
0 x2 − y2

)
,

and hence

〈A((a1, a2), u) − A((a1, a2), v), (x1, x2) − (y1, y2)〉
= ((x1 − y1)

2, (x2 − y2)
2)

≥C− (0, 0).
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Observe that T is H -hemicontinuous. For, if (x1, x2), (y1, y2) ∈ K and α > 0, then

dH (T ((x1, x2) + α(y1, y2)), T ((x1, x2)) ≤ 2α(y1 + y2)

which implies that dH (T ((x1, x2) + α(y1, y2)), T ((x1, x2)) → 0 as α → 0+.
On the other hand, for any fixed u ∈ L(R2, R2), if a sequence (xn, yn) in K converges

weakly (equivalently, strongly) to (a, b), we have

‖A((xn, yn), u) − A((a, b), u)‖ =
∥∥∥∥

(
0 xn − a

yn − b 0

)∥∥∥∥
= |xn − a| + |yn − b| → 0 as n → ∞.

Hence A is completely continuous in the first variable, and is of course continuous in the
second variable.

4 Weak solutions of GVVI without monotonicity

We start with the Brouwer fixed point theorem which enables us to investigate the solvability
of GVVI without monotonicity assumptions.

Lemma 4.1 (Brouwer Fixed Point Theorem [1]) Let K be a nonempty compact convex sub-
set of Rn and let f : K → K be a continuous function. Then f has a fixed point, i.e., there
exists x ∈ K such that f (x) = x.

Theorem 4.2 Let X be a real reflexive Banach space, Y a real Banach space, K a nonempty
bounded closed convex subset of X, C : K → 2Y , D : K → 2Y and T : K → 2L(X,Y )

three multifunctions, where D is defined by D(x) = Y\(−intC(x)), f : K → Y and
A : K × L(X, Y ) → L(X, Y ) two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has weakly closed graph;
(iii) T is weakly upper semicontinuous with nonempty weakly compact values;
(iv) f is weakly sequentially continuous and C−-convex.
(v) A is completely continuous.

Then GVVI has a weak solution x0 ∈ K , that is, for each y ∈ K there exists u ∈ T (x0) such
that

〈A(x0, u), y − x0〉 + f (y) − f (x0) �intC(x0) 0.

Proof Suppose on the contrary that this GVVI has no weak solutions. Let N : K → 2K be
a multifunction defined by, for y ∈ K ,

N (y) = {x ∈ K : 〈A(x, u), y − x〉 + f (y) − f (x) ≤intC(x) 0, for all u ∈ T (x)}.
To prove each N (y) is weakly open, we consider the complement of N (y) and simply write
M(y) = K\N (y). Fix y ∈ K . For any x in the weak closure M(y)

w
of M(y) which is

weakly compact, there is a sequence {xn} in M(y) converging weakly to x . Then, for each
n ∈ N there exists un ∈ T (xn) satisfying

〈A(xn, un), y − xn〉 + f (y) − f (xn) ∈ D(xn). (11)
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Since T weak-to-weak upper semicontinuous with weakly compact values, the sequence
{un} has a subsequence {un j } that converges weakly to some point u in T (x). For each n j ,
we have

〈A(xn j , un j ), y−xn j 〉−〈A(x, u), y−x〉=〈A(xn j , un j )−A(x, u), y−xn j 〉−〈A(x, u), xn j −x〉,

which implies that the sequence {〈A(xn j , v), y − xn j 〉 + f (y) − f (xn j )} converges weakly
to 〈A(x, u), y − x〉 + f (y) − f (x) by complete continuity of A, weak-to-weak continuity
of A(x, u) and weakly sequential continuity of f . Since the graph of D is weakly closed, it
follows from Eq. (11) that

〈A(x, u), y − x〉 + f (y) − f (x) ∈ D(x)

which means x ∈ M(y). This shows that M(y) is weakly closed and so N (y) is weakly
open.

By our assumption for each x ∈ K there exists some y ∈ K such that x ∈ N (y); hence
K = ⋃

y∈K N (y) and {N (y) : y ∈ K } is a weakly open cover of K . Since K is weakly
compact, there exists a finite subset {y1, ..., yn} of K such that

K =
n⋃

i=1

N (yi ).

Then there exists a family of functions {β1, ..., βn} with the following properties:

(a) for each j , β j : K → [0, 1] is continuous with respect to the weak topology τ of X ;
(b) β j vanishes on K\N (y j );
(c)

∑n
j=1 β j (x) = 1, for all x ∈ K .

That is, {β1, ..., βn} is a τ -continuous partition of unity subordinated to this finite cover
{N (y1), ..., N (yn)}. Define a function ϕ : K → X by

ϕ(x) =
n∑

j=1

β j (x)y j , x ∈ K ,

so that ϕ is τ -continuous. Let S = co{y1, ..., yn} ⊂ K . Then S is a compact convex subset
of a finite dimensional space and ϕ maps S into S. By the Brouwer fixed point theorem
(Lemma 4.1), there exists x0 ∈ S such that

x0 = ϕ(x0) =
n∑

j=1

β j (x0)y j .

Let x ∈ K . Consider the nonempty set of natural numbers

k(x) = { j ∈ N : x ∈ N (y j )}.
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Since f is C−-convex, for u ∈ T (x0) we have

0 = 〈A(x0, u), x0 − x0〉 + f (x0) − f (x0)

=
〈

A(x0, u), x0 −
n∑

j=1

β j (x0)y j

〉
+ f (x0) − f

⎛

⎝
n∑

j=1

β j (x0)y j

⎞

⎠

≥ C(x0)

n∑

j=1

β j (x0)[〈A(x0, u), x0 − y j 〉 + f (x0) − f (y j )]

=
∑

j∈k(x0)

β j (x0)[〈A(x0, u), x0 − y j 〉 + f (x0) − f (y j )]

≥ intC(x0)0,

contrary to our hypothesis. Therefore the GVVI has a weak solution. ��
The same proof also yields the following result. Just notice that the range space of the

mapping A is not L(X, Y ), but Lcc(X, Y ) instead. Let Xw denote the space X equipped with
the weak topology. We also remark that if D is weak-to-norm upper semicontinuous, then
G(D) is a closed subset of Xw × Y because Y is regular.

Theorem 4.3 Let X and Y be real Banach spaces, K a nonempty compact convex subset
of X, C : K → 2Y , D : K → 2Y and T : K → 2L(X,Y ) three multifunctions, where D is
defined by D(x) = Y\(−intC(x)), f : K → Y and A : K × L(X, Y ) → Lcc(X, Y ) two
single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) G(D) is closed in Xw × Y ;
(iii) T is weak-to-norm upper semicontinuous with nonempty compact values;
(iv) f is completely continuous and C−-convex.
(v) A is completely continuous.

Then GVVI has a weak solution.

We obtain the following as an immediate consequence of Theorem 4.2.

Corollary 4.4 Let Y be a real Banach space, K a nonempty bounded closed convex sub-
set of Rn, C : K → 2Y and T : K → 2L(Rn,Y ) two multifunctions, f : K → Y and
A : K × L(Rn, Y ) → L(Rn, Y ) two single-valued functions. Suppose that:

(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has closed graph;
(iii) T is upper semicontinuous with nonempty compact values;
(iv) f is continuous and C−-convex.
(v) A is continuous.

Then GVVI has a weak solution.

Theorem 4.2 can be generalized to the case where the set K is closed and convex but not
necessarily bounded under a coercive condition.

Theorem 4.5 Let X be a real reflexive Banach space, Y a real Banach space, K a nonempty
bounded closed convex subset of X, C : K → 2Y , D : K → 2Y and T : K → 2L(X,Y )

three multifunctions, where D is defined by D(x) = Y\(−intC(x)), f : K → Y and
A : K × L(X, Y ) → L(X, Y ) two single-valued functions. Suppose that:
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(i) C is a cone mapping such that intC− �= ∅, where C− = ⋂
x∈K C(x);

(ii) D has weakly closed graph;
(iii) T is weakly upper semicontinuous with nonempty weakly compact values;
(iv) f is weakly sequentially continuous and C−-convex.
(v) A is completely continuous;

(vi) for each x ∈ K with ‖x‖ = r and each y ∈ K ∩ Br , there exists u ∈ T (x) such that

〈A(x, u), y − x〉 + f (y) − f (x) ≤intC(x) 0.

Then GVVI has a weak solution.

Proof By Theorem 4.2, there exists a point xr ∈ K ∩ Br with the property that for each
y ∈ K ∩ Br , there exists u ∈ T (xr ) such that

〈A(xr , u), y − xr 〉 + f (y) − f (xr ) �intC(xr ) 0. (12)

It follows from assumption (vi) that ‖xr‖ < r . To prove that xr is a weak solution of GVVI
on K , let z ∈ K and choose t ∈ (0, 1) small enough such that (1 − t)xr + t z ∈ K ∩ Br . In
Eq. (12), substituting (1 − t)xr + t z for y yields

〈A(xr , u), (1 − t)xr + t z − xr 〉 + f ((1 − t)xr + t z) − f (xr ) �intC(xr ) 0, (13)

for some point u ∈ T (xr ). Since f is C−-convex, we have

〈A(xr , u), (1 − t)xr + t z − xr 〉 + f ((1 − t)xr + t z) − f (xr )

≤C(xr ) t〈A(xr , u), z − xr 〉 + (1 − t) f (xr ) + t f (z) − f (xr )

= t[〈A(xr , u), z − xr 〉 + f (z) − f (xr )]. (14)

Therefore Eq. (13) and (14) and Lemma 3.2 imply that

〈A(xr , u), z − xr 〉 + f (z) − f (xr ) �≤intC(xr ) 0.

This completes the proof. ��
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